博客
关于我
pytorch loss = loss_func(output, label) 报错
阅读量:313 次
发布时间:2019-03-03

本文共 639 字,大约阅读时间需要 2 分钟。

在运行损失函数时,当执行 loss = loss_func(output, label) 时,出现了两个错误。以下是详细的解决方法:

1. 数据类型错误

错误信息: RuntimeError: Expected object of scalar type Long but got scalar type Float for argument #2 'target'

问题分析: 这是因为标签 label 必须是 LongTensor 类型,而之前的代码中将其转换为浮点数类型了。具体来说,image[1] 是字符串类型,在转换为浮点数后,再将其转换为 LongTensor 类型。

解决方法: 将标签转换为 LongTensor 类型:

label = t.tensor(float(image[1])).long()

这样可以确保标签是正确的整数类型。

2. 类别标签范围错误

错误信息: Assertioncur_target >= 0 && cur_target < n_classes’ failed`

问题分析: 这是因为数据集的类别是从 1 开始的,但在计算损失函数时,默认是从 0 开始的。因此需要将标签减去 1。

解决方法: 将标签调整为减去 1:

label = t.tensor(float(image[1]) - 1).long()

这样可以确保标签的范围是从 0 开始的,符合损失函数的预期。

通过以上修改,可以解决以上两个错误,确保训练过程顺利进行。

转载地址:http://wncq.baihongyu.com/

你可能感兴趣的文章
Objective-C实现base64加解密(附完整源码)
查看>>
Objective-C实现base64编码 (附完整源码)
查看>>
Objective-C实现base85 编码算法(附完整源码)
查看>>
Objective-C实现basic graphs基本图算法(附完整源码)
查看>>
Objective-C实现BCC校验计算(附完整源码)
查看>>
Objective-C实现bead sort珠排序算法(附完整源码)
查看>>
Objective-C实现BeadSort珠排序算法(附完整源码)
查看>>
Objective-C实现bellman ford贝尔曼福特算法(附完整源码)
查看>>
Objective-C实现bellman-ford贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现bellman-ford贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现bellmanFord贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现BellmanFord贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现bezier curve贝塞尔曲线算法(附完整源码)
查看>>
Objective-C实现bfs 最短路径算法(附完整源码)
查看>>
Objective-C实现BF算法 (附完整源码)
查看>>
Objective-C实现Bilateral Filter双边滤波器算法(附完整源码)
查看>>
Objective-C实现binary exponentiation二进制幂运算算法(附完整源码)
查看>>
Objective-C实现binary search二分查找算法(附完整源码)
查看>>
Objective-C实现binary tree mirror二叉树镜像算法(附完整源码)
查看>>
Objective-C实现binary tree traversal二叉树遍历算法(附完整源码)
查看>>