博客
关于我
pytorch loss = loss_func(output, label) 报错
阅读量:313 次
发布时间:2019-03-03

本文共 639 字,大约阅读时间需要 2 分钟。

在运行损失函数时,当执行 loss = loss_func(output, label) 时,出现了两个错误。以下是详细的解决方法:

1. 数据类型错误

错误信息: RuntimeError: Expected object of scalar type Long but got scalar type Float for argument #2 'target'

问题分析: 这是因为标签 label 必须是 LongTensor 类型,而之前的代码中将其转换为浮点数类型了。具体来说,image[1] 是字符串类型,在转换为浮点数后,再将其转换为 LongTensor 类型。

解决方法: 将标签转换为 LongTensor 类型:

label = t.tensor(float(image[1])).long()

这样可以确保标签是正确的整数类型。

2. 类别标签范围错误

错误信息: Assertioncur_target >= 0 && cur_target < n_classes’ failed`

问题分析: 这是因为数据集的类别是从 1 开始的,但在计算损失函数时,默认是从 0 开始的。因此需要将标签减去 1。

解决方法: 将标签调整为减去 1:

label = t.tensor(float(image[1]) - 1).long()

这样可以确保标签的范围是从 0 开始的,符合损失函数的预期。

通过以上修改,可以解决以上两个错误,确保训练过程顺利进行。

转载地址:http://wncq.baihongyu.com/

你可能感兴趣的文章
numpy数组替换其中的值(如1替换为255)
查看>>
numpy数组索引-ChatGPT4o作答
查看>>
NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
查看>>
Numpy矩阵与通用函数
查看>>
numpy绘制热力图
查看>>
numpy转PIL 报错TypeError: Cannot handle this data type
查看>>
Numpy闯关100题,我闯了95关,你呢?
查看>>
nump模块
查看>>
Nutch + solr 这个配合不错哦
查看>>
NuttX 构建系统
查看>>
NutUI:京东风格的轻量级 Vue 组件库
查看>>
NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
查看>>
NutzWk 5.1.5 发布,Java 微服务分布式开发框架
查看>>
NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
查看>>
Nuxt Time 使用指南
查看>>
NuxtJS 接口转发详解:Nitro 的用法与注意事项
查看>>
NVDIMM原理与应用之四:基于pstore 和 ramoops保存Kernel panic日志
查看>>
NVelocity标签使用详解
查看>>
NVelocity标签设置缓存的解决方案
查看>>
Nvidia Cudatoolkit 与 Conda Cudatoolkit
查看>>