博客
关于我
pytorch loss = loss_func(output, label) 报错
阅读量:313 次
发布时间:2019-03-03

本文共 639 字,大约阅读时间需要 2 分钟。

在运行损失函数时,当执行 loss = loss_func(output, label) 时,出现了两个错误。以下是详细的解决方法:

1. 数据类型错误

错误信息: RuntimeError: Expected object of scalar type Long but got scalar type Float for argument #2 'target'

问题分析: 这是因为标签 label 必须是 LongTensor 类型,而之前的代码中将其转换为浮点数类型了。具体来说,image[1] 是字符串类型,在转换为浮点数后,再将其转换为 LongTensor 类型。

解决方法: 将标签转换为 LongTensor 类型:

label = t.tensor(float(image[1])).long()

这样可以确保标签是正确的整数类型。

2. 类别标签范围错误

错误信息: Assertioncur_target >= 0 && cur_target < n_classes’ failed`

问题分析: 这是因为数据集的类别是从 1 开始的,但在计算损失函数时,默认是从 0 开始的。因此需要将标签减去 1。

解决方法: 将标签调整为减去 1:

label = t.tensor(float(image[1]) - 1).long()

这样可以确保标签的范围是从 0 开始的,符合损失函数的预期。

通过以上修改,可以解决以上两个错误,确保训练过程顺利进行。

转载地址:http://wncq.baihongyu.com/

你可能感兴趣的文章
Netty源码—2.Reactor线程模型一
查看>>
Netty源码—3.Reactor线程模型三
查看>>
Netty源码—4.客户端接入流程一
查看>>
Netty源码—4.客户端接入流程二
查看>>
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—5.Pipeline和Handler二
查看>>
Netty源码—6.ByteBuf原理一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理一
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty相关
查看>>
Netty遇到TCP发送缓冲区满了 写半包操作该如何处理
查看>>
Netty:ChannelPipeline和ChannelHandler为什么会鬼混在一起?
查看>>
Netty:原理架构解析
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>